Studies on the structure and function of intestinal microbes of surgeonfishes in the central Red Sea with a focus on the giant bacteria Epulopiscium spp.

  • Sou Miyake

Student thesis: Doctoral Thesis

Abstract

The intestinal tract microbiota – microbial community of the gut – is an important field in microbiology not only because of its critical role in the host development, but also increasingly large number of diseases are associated with certain state of the gut microbiota. The community structure and function of the gut microbiota is relatively well studied in humans and related higher vertebrates, but is severely understudied in fish. This is especially true for the coral reef fishes, who constitute the most diverse assemblage of vertebrates spread over a very local scale, and are essential for the resilience of the reefs. In order to bridge this gap in knowledge, this dissertation studied the community structure, interactions and functions of the gut microbial community from the surgeonfishes in the Red Sea – with special focus on the surgeonfish enteric symbiont Epulopiscium spp. Initially, I studied the composition of the gut microbiota of nine surgeonfish and three nonsurgeonfish species from the Red Sea using 454 pyrosequencing. Upon discovering the high abundance of Epulopiscium spp. in herbivorous surgeonfishes, I then proceeded to identify their phylogenetic diversity, distribution, as well as deducing their coevolutionary relationship with the host. Because Epulopiscium spp. undergo substantial changes in the cell size (grow up to ~600μm) and the DNA concentration (from 85 to over 250pg per cell) throughout their diel lifecycle, I also studied the temporal changes in their expression pattern using RNA-seq. Overall, this dissertation shed light on the complex structure, interaction and function of an important family of coral reef fish from the Red Sea through range of molecular techniques.
Date of AwardMay 2015
Original languageEnglish (US)
Awarding Institution
  • Biological, Environmental Sciences and Engineering
SupervisorUlrich Stingl (Supervisor)

Keywords

  • Gut Microbiota
  • Epulopiscium
  • community composition
  • Differential Expression
  • Coevolution
  • Diel Lifecycle

Cite this

'