Nanostructured Polysulfone-Based Block Copolymer Membranes

  • Yihui Xie

Student thesis: Doctoral Thesis


The aim of this work is to fabricate nanostructured membranes from polysulfone-based block copolymers through self-assembly and non-solvent induced phase separation. Block copolymers containing polysulfone are novel materials for this purpose providing better mechanical and thermal stability to membranes than polystyrene-based copolymers, which have been exclusively used now. Firstly, we synthesized a triblock copolymer, poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) through polycondensation and reversible addition-fragmentation chain-transfer polymerization. The obtained membrane has a highly porous interconnected skin layer composed of elongated micelles with a flower-like arrangement, on top of the graded finger-like macrovoids. Membrane surface hydrolysis was carried out in a combination with metal complexation to obtain metal-chelated membranes. The copper-containing membrane showed improved antibacterial capability. Secondly, a poly(acrylic acid)-b-polysulfone-b-poly(acrylic acid) triblock copolymer obtained by hydrolyzing poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) formed a thin film with cylindrical poly(acrylic acid) microdomains in polysulfone matrix through thermal annealing. A phase inversion membrane was prepared from the same polymer via self-assembly and chelation-assisted non-solvent induced phase separation. The spherical micelles pre-formed in a selective solvent mixture packed into an ordered lattice in aid of metal-poly(acrylic acid) complexation. The space between micelles was filled with poly(acrylic acid)-metal complexes acting as potential water channels. The silver0 nanoparticle-decorated membrane was obtained by surface reduction, having three distinct layers with different particle sizes. Other amphiphilic copolymers containing polysulfone and water-soluble segments such as poly(ethylene glycol) and poly(N-isopropylacrylamide) were also synthesized through coupling reaction and copper0-mediated reversible-deactivation radical polymerization. Finally, phase inversion membranes were prepared from polytriazole-polysulfone random copolymers, which were obtained by “clicking” 1,2,3-triazole ring substituents bearing OH groups onto the polysulfone backbone via copperI-catalyzed azide-alkyne cycloaddition. The increased hydrophilicity of membranes imparted the higher water permeability and fouling resistance to the ultrafiltration membranes. Polytriazole-b-polysulfone-b-polytriazole triblock copolymer was synthesized by RAFT and post-polymerization click modification. Hydrogen bond-mediated self-assembly induced the formation of a nanostructured polytriazole-b-polysulfone-b-polytriazole / poly(acrylic acid)-b-polysulfone-b-poly(acrylic acid) blend membrane with a 1: 1 stoichiometric ratio of triazole and acid. String-like fused micelles with polytriazole/poly(acrylic acid) corona were present on the membrane surface, after immersion in a coagulation bath of copper2+ aqueous solution.
Date of AwardMay 2016
Original languageEnglish (US)
Awarding Institution
  • Biological, Environmental Sciences and Engineering
SupervisorSuzana Nunes (Supervisor)


  • Membrane
  • Block Copolymer
  • Polysulfone
  • Phase Inversion
  • Nanostructure

Cite this