The interest in implementing energy-efficient digital circuits using micro and
nanoelectromechanical resonator technology has increased significantly over the last
decade given their lower energy consumption in comparison to complementary metal
oxide-semiconductor circuits. In this thesis, multiple circuit designs based on micro and
nanoelectromechanical beam resonators are presented. These circuits include a nano
resonator-based flash style analog-to-digital converter, a 4-bit digital-to-analog
converter, and a micro-resonator-based 7:3 counter, all among the key building blocks
of a microcomputing system. Simulations and experimental results were obtained for all
circuits. In general, the proposed circuits based on nanoelectromechanical resonators
show up to 90% reduction in energy consumption compared to their complementary
metal-oxide-semiconductor counterparts in MHz operation speeds, fulfilling
requirements for many applications such as Internet of Things and biomedical devices.
Date of Award | Nov 2019 |
---|
Original language | English (US) |
---|
Awarding Institution | - Computer, Electrical and Mathematical Sciences and Engineering
|
---|
Supervisor | Hossein Fariborzi (Supervisor) |
---|
- MEMs Resonators
- Analog-to-Digital
- Counter
- Low power circuit