Mechanistic Studies of Human Immune Disease Relevant Genes and CRISPR Genome Editing Using Stem Cells

  • Baolei Yuan

Student thesis: Doctoral Thesis

Abstract

Stem cells, with the ability to self-renew and differentiate into intended cell types, are a valuable tool for disease modeling and mechanistic study. CRISPR-Cas9 has been widely used for genome editing due to its high efficiency and convenience. However, CRISPR-Cas9 has large-deletion safety issues that dramatically restrict its applications. Wiskott-Aldrich syndrome (WAS) is an inborn immunological disorder caused by WASP deficiency. WASP functions in the nucleus, which may help to understand WAS pathology, are poorly defined. Pannexin 1 (PANX1) forms large plasma membrane pores to exchange intracellular small molecules with the extracellular environment and functions in inflammatory processes. The regulatory mechanisms of the PANX1 channel remain obscure. In this dissertation, I focused on mechanistic studies of CRISPR-Cas9 genome editing, and two immune disease relevant genes, WASP and PANX1 using stem cell-derived immune cells. We first found that CRISPR-induced large deletions (LDs) are predominantly mediated by the MMEJ repair pathway through statistical studies. Further, we found POLQ and RPA play vital roles in CRISPR-induced LDs. Modulation of POLQ and RPA can decrease CRISPR-induced LDs and increase HDR efficiency. Using three isogenic WAS iPSC models generated via gene editing, we successfully recapitulated WAS phenotypes, and for the first time, revealed that WASP regulates RNA splicing via epigenetically controlling the transcription of splicing factors and directly participating in the splicing machinery through a liquid-liquid phase separation process. We established a full-length human PANX1 (hPANX1) channel model via cryo-electron microscopy experiments and molecular dynamics simulation study, and found that hPANX1 channel is a homo-heptamer with both the N- and C-termini stretching deeply into the pore funnel. Functional studies of three selected residues support the new hPANX1 channel model and suggest the potential regulatory role of hPANX1 in pyroptosis upon immune responses. Overall, the mechanistic studies of WASP, PANX1 and CRISPR genome editing revealed new roles of WASP in regulating RNA splicing, new functional insights of PANX1 in pyroptosis, and uncovered two critical players POLQ and RPA in CRISPR-induced LDs.
Date of AwardNov 2022
Original languageEnglish (US)
Awarding Institution
  • Biological, Environmental Sciences and Engineering
SupervisorMo Li (Supervisor)

Keywords

  • Stem cells
  • Wiskott-Aldrich syndrome
  • Pannexin 1
  • CRISPR-Cas9
  • RNA splicing
  • liquid-liquid phase separation
  • Large deletion
  • Cryo-EM
  • Pyroptosis

Cite this

'