Is Post Transplantation Performance Driven by the Variability of the Habitat of Origin?

  • Victoria C. Golding

Student thesis: Master's Thesis

Abstract

As rising sea temperatures and increases in the frequency, duration, and intensity of marine heatwaves threaten coral survival at a global scale, research on the capacity of corals to acclimatize and adapt to changing environments has become a high priority. Understanding how environmental parameters shape coral thermal performance across habitats is crucial to identify populations with high vulnerability or high thermal tolerance to future ocean warming. In recent studies, corals from high temperature variable environments (HVE) have shown increased thermal tolerance compared to corals from low temperature variable environments (LVE). Here, I investigate if these phenotypes are shaped by acclimatization, habitat-specific adaptation, or a combination of both, in the branching coral, Acropora hemprichii, by reciprocally transplanting individuals between a back (HVE) and front reef (LVE). After ten months of acclimatization, comparisons of photosynthetic efficiency (photosystem II), mortality, and bleaching recovery was assessed for > 2 months between coral ramets following a natural bleaching event in the central Red Sea. In tandem, coral bleaching severity and recovery in each reef environment was assessed to genus level by photographic surveys of fixed belt transects. Bleaching between reef sites was compared against bleaching in treatments to differentiate the role of habitat specific adaptation and acclimatization in the corals. This study aims to elucidate the evolutionary mechanisms driving coral habitat-specific thermal stress tolerances, which may inform coral reef management and restoration efforts.
Date of AwardJul 2021
Original languageEnglish (US)
Awarding Institution
  • Biological, Environmental Sciences and Engineering
SupervisorManuel Aranda (Supervisor)

Keywords

  • transplantation
  • thermal tolerance
  • coral
  • bleaching

Cite this

'