In-vitro electronic devices are promising to dynamically monitor minute-changes in
biological systems. Electronic devices based on conducting polymers such as poly(3,4-
ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) provide suitable and
attractive substrates for biointerfacing. The soft polymer surface acts as a cushion for the
living systems to interface while electronically detecting their properties. However, to this
date, most bioelectronics devices have been fabricated via multi-step lithography
techniques, which do not allow for mass fabrication and hence high throughput biosensing.
Inkjet printing presents an alternative to fabricate organic bioelectronic devices. Besides
being low-cost, inkjet printing allows to fabricate several devices in a short time with
flexible design patterns and minimal material waste. Here, using inkjet printing, we
fabricated PEDOT:PSS based organic electrochemical transistors (OECTs) for
biomembrane interfacing. We optimized the deposition of various inks (silver
nanoparticles (AgNPs), PEDOT:PSS, and the dielectric SU-8) used during the fabrication
of these devices. We characterized the electrical characteristics of all-printed OECTs with
various geometries and identified the high-performing ones. Due to the flexibility of ink
optimization and design patterns, these all inkjet-printed electronic devices provide an
alternative for mass production of biointerfacing platforms.
Date of Award | Sep 2021 |
---|
Original language | English (US) |
---|
Awarding Institution | - Biological, Environmental Sciences and Engineering
|
---|
Supervisor | Sahika Inal (Supervisor) |
---|
- inkjet printing
- printed organic electronics
- in-vitro diagnostics