Design and Real-time Implementation of Model-free Control for Solar Collector

Student thesis: Master's Thesis


This work addresses the design and real-time implementation of adaptive control strategies on the parabolic solar collector to enhance the production efficiency under varying working conditions. For example, the unpredictable variations of the solar irradiance and thermal losses, these factors can be a major problem in the control design. The control objective is to force the outlet temperature of the collector fluid, to track a predefined reference temperature regardless of the environmental changes. In this work, two control strategies have been designed and analyzed. First, an intelligent proportional-integral feedback control, which combines the proportionalintegral feedback control with an ultra-local model is proposed. This strategy uses a transfer function model that has been derived and identified from real-time data and used to test the controller performance. Second, an adaptive nonlinear control using Lyapunov stability theory combined with the phenomenological representation of the system is introduced. This strategy uses a bilinear model derived from the heat transfer equation. Both control strategies showed good performance in the simulations with respect to the convergence time and tracking accuracy. Besides, the conventional proportional-integral controller has been successfully implemented in the real system.
Date of AwardAug 2019
Original languageEnglish (US)
Awarding Institution
  • Computer, Electrical and Mathematical Sciences and Engineering
SupervisorTaousmeriem Laleg (Supervisor)


  • Solar energy
  • Model-free control
  • Lyapunov control
  • Intelligent PID controllers
  • Parabolic solar collector
  • Input-output representation

Cite this