Zinc Oxide Quantum Dots Embedded Porous Carbon Nanosheets for High-Capacity and Ultrastable Lithium-Ion Battery Anodes

Jian Yang, Tingting Feng, Haiping Zhou, Cerui Hu, Yuping Guo, Cheng Chen, Zhi Chen, Jiahao Liu, Gang Huang, Mengqiang Wu

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Carbon materials are widely used in lithium-ion batteries (LIBs) due to their high performance, safety, and reliability, along with low cost and easy availability. However, the low lithium storage capability of bare carbon materials limits the further improvement of the capacity of LIBs. Here, we report a facile self-poring strategy for the synthesis of trace amounts of ZnO quantum dots (QDs) (∼5 nm) embedded in highly porous carbon nanosheets by using the metal centers of a Zn-based metal-organic ligand structure as a pore-creating agent. Benefiting from the synergistic functions of nanostructuring, heterocomponent doping, and QDs effects, the as-prepared materials deliver superior lithium storage properties in comparison with the existing carbon-based materials—2,300 mAh g−1 at 0.2 A g−1, ∼600 mAh g−1 at 10 A g−1, and ∼700 mAh g−1 after 3,000 cycles at 5 A g−1—and are promising candidates for next-generation high-capacity LIB electrodes.
Original languageEnglish (US)
Pages (from-to)100186
JournalCell Reports Physical Science
Volume1
Issue number9
DOIs
StatePublished - Sep 16 2020

Bibliographical note

KAUST Repository Item: Exported on 2021-02-23
Acknowledgements: This work was supported by the Sichuan Science and Technology Program (18ZDYF1521, 2017-XT00-00001-GX, 2019YFH0002, and 2019YFG0222). J.Y. C.H. Y.G. J.L. C.C. and Z.C. prepared the samples and conducted the electrochemical measurements. J.Y. T.F. H.Z. M.W. and G.H. wrote the manuscript. All of the authors discussed the results and reviewed the manuscript. The authors declare no competing interests.

Fingerprint

Dive into the research topics of 'Zinc Oxide Quantum Dots Embedded Porous Carbon Nanosheets for High-Capacity and Ultrastable Lithium-Ion Battery Anodes'. Together they form a unique fingerprint.

Cite this