Your smartphone could act as a pulse-oximeter and as a single-lead ECG

Ahsan Mehmood, Asma Sarouji, M. Mahboob Ur Rahman*, Tareq Y. Al-Naffouri

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

In the post-covid19 era, every new wave of the pandemic causes an increased concern/interest among the masses to learn more about their state of well-being. Therefore, it is the need of the hour to come up with ubiquitous, low-cost, non-invasive tools for rapid and continuous monitoring of body vitals that reflect the status of one’s overall health. In this backdrop, this work proposes a deep learning approach to turn a smartphone—the popular hand-held personal gadget—into a diagnostic tool to measure/monitor the three most important body vitals, i.e., pulse rate (PR), blood oxygen saturation level (aka SpO2), and respiratory rate (RR). Furthermore, we propose another method that could extract a single-lead electrocardiograph (ECG) of the subject. The proposed methods include the following core steps: subject records a small video of his/her fingertip by placing his/her finger on the rear camera of the smartphone, and the recorded video is pre-processed to extract the filtered and/or detrended video-photoplethysmography (vPPG) signal, which is then fed to custom-built convolutional neural networks (CNN), which eventually spit-out the vitals (PR, SpO2, and RR) as well as a single-lead ECG of the subject. To be precise, the contribution of this paper is twofold: (1) estimation of the three body vitals (PR, SpO2, RR) from the vPPG data using custom-built CNNs, vision transformer, and most importantly by CLIP model (a popular image-caption-generator model); (2) a novel discrete cosine transform+feedforward neural network-based method that translates the recorded video-PPG signal to a single-lead ECG signal. The significance of this work is twofold: (i) it allows rapid self-testing of body vitals (e.g., self-monitoring for covid19 symptoms), (ii) it enables rapid self-acquisition of a single-lead ECG, and thus allows early detection of atrial fibrillation (abormal heart beat or arrhythmia), which in turn could enable early intervention in response to a range of cardiovascular diseases, and could help save many precious lives. Our work could help reduce the burden on healthcare facilities and could lead to reduction in health insurance costs.

Original languageEnglish (US)
Article number19277
JournalScientific Reports
Volume13
Issue number1
DOIs
StatePublished - Dec 2023

Bibliographical note

Publisher Copyright:
© 2023, The Author(s).

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Your smartphone could act as a pulse-oximeter and as a single-lead ECG'. Together they form a unique fingerprint.

Cite this