Abstract
This study describes the preparation of a multifunctional adsorptive catalyst by the incorporation of ligand groups within the channels of magnetic amphiphilic nanocomposites and attached with Pd nanoparticles. It was clearly demonstrated that Pd2+ was adsorbed by ligand-functionalized materials in water, and then Pd2+ was coordinated with ligand groups. Finally, the Pd nanoparticles were produced via an in situ reduction of Pd2+ by ligand groups through a simple hydrothermal process. Moreover, amphiphilic nanomaterials are viewed as excellent collectors of hydrophobic contaminants in water. The immobilized catalytic active sites with ligand-functionalized nanocomposites were allowed for maximal exposure to the reactants with minimal leaching of the Pd nanoparticles. The unique amphiphilic nanocomposites enabled selective oxidation of alcohols to proceed efficiently in water under aerobic conditions. Moreover, this nanocomposite catalyst could be completely recovered using an external magnet due to the superparamagnetic behavior of Fe3O4 and can be recycled with sustained selectivity and activity.
Original language | English (US) |
---|---|
Pages (from-to) | 1336-1344 |
Number of pages | 9 |
Journal | Green Chem. |
Volume | 19 |
Issue number | 5 |
DOIs | |
State | Published - 2017 |
Externally published | Yes |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledged KAUST grant number(s): CRG-1-2012-LAI-009
Acknowledgements: This work was supported by the National Natural Science Foundation of China (21390394), the National Basic Research Program of China (2012CB821700 and 2011CB808703), NSFC (21261130584 and 91022030), “111” project (B07016), Award Project of KAUST (CRG-1-2012-LAI-009) and Ministry of Education, Science and Technology Development Center Project (20120061130012).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.