WaVPeak: Picking NMR peaks through wavelet-based smoothing and volume-based filtering

Zhi Liu, Ahmed Abbas, Bing-Yi Jing, Xin Gao

Research output: Contribution to journalArticlepeer-review

52 Scopus citations

Abstract

Motivation: Nuclear magnetic resonance (NMR) has been widely used as a powerful tool to determine the 3D structures of proteins in vivo. However, the post-spectra processing stage of NMR structure determination usually involves a tremendous amount of time and expert knowledge, which includes peak picking, chemical shift assignment and structure calculation steps. Detecting accurate peaks from the NMR spectra is a prerequisite for all following steps, and thus remains a key problem in automatic NMR structure determination. Results: We introduce WaVPeak, a fully automatic peak detection method. WaVPeak first smoothes the given NMR spectrum by wavelets. The peaks are then identified as the local maxima. The false positive peaks are filtered out efficiently by considering the volume of the peaks. WaVPeak has two major advantages over the state-of-the-art peak-picking methods. First, through wavelet-based smoothing, WaVPeak does not eliminate any data point in the spectra. Therefore, WaVPeak is able to detect weak peaks that are embedded in the noise level. NMR spectroscopists need the most help isolating these weak peaks. Second, WaVPeak estimates the volume of the peaks to filter the false positives. This is more reliable than intensity-based filters that are widely used in existing methods. We evaluate the performance of WaVPeak on the benchmark set proposed by PICKY (Alipanahi et al., 2009), one of the most accurate methods in the literature. The dataset comprises 32 2D and 3D spectra from eight different proteins. Experimental results demonstrate that WaVPeak achieves an average of 96%, 91%, 88%, 76% and 85% recall on 15N-HSQC, HNCO, HNCA, HNCACB and CBCA(CO)NH, respectively. When the same number of peaks are considered, WaVPeak significantly outperforms PICKY. The Author(s) 2012. Published by Oxford University Press.
Original languageEnglish (US)
Pages (from-to)914-920
Number of pages7
JournalBioinformatics
Volume28
Issue number7
DOIs
StatePublished - Feb 10 2012

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01

ASJC Scopus subject areas

  • Biochemistry
  • Computational Theory and Mathematics
  • Computational Mathematics
  • Molecular Biology
  • Statistics and Probability
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'WaVPeak: Picking NMR peaks through wavelet-based smoothing and volume-based filtering'. Together they form a unique fingerprint.

Cite this