Water Splitting and CO2 Reduction under Visible Light Irradiation Using Z-Scheme Systems Consisting of Metal Sulfides, CoOx-Loaded BiVO4, and a Reduced Graphene Oxide Electron Mediator

Akihide Iwase, Shunya Yoshino, Tomoaki Takayama, Yun Hau Ng, Rose Amal, Akihiko Kudo*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

468 Scopus citations

Abstract

Metal sulfides are highly active photocatalysts for water reduction to form H2 under visible light irradiation, whereas they are unfavorable for water oxidation to form O2 because of severe self-photooxidation (i.e., photocorrosion). Construction of a Z-scheme system is a useful strategy to split water into H2 and O2 using such photocorrosive metal sulfides because the photogenerated holes in metal sulfides are efficiently transported away. Here, we demonstrate powdered Z-schematic water splitting under visible light and simulated sunlight irradiation by combining metal sulfides as an H2-evolving photocatalyst, reduced graphene oxide (RGO) as an electron mediator, and a visible-light-driven BiVO4 as an O2-evolving photocatalyst. This Z-schematic photocatalyst composite is also active in CO2 reduction using water as the sole electron donor under visible light.

Original languageEnglish (US)
Pages (from-to)10260-10264
Number of pages5
JournalJournal of the American Chemical Society
Volume138
Issue number32
DOIs
StatePublished - Aug 17 2016

Bibliographical note

Publisher Copyright:
© 2016 American Chemical Society.

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Water Splitting and CO2 Reduction under Visible Light Irradiation Using Z-Scheme Systems Consisting of Metal Sulfides, CoOx-Loaded BiVO4, and a Reduced Graphene Oxide Electron Mediator'. Together they form a unique fingerprint.

Cite this