Abstract
The association between the variability of phytoplankton biomass and community structure and the distribution of water masses around the Antarctic Peninsula were examined during austral summer 1993. Phytoplankton biomass showed high variability, and was dominated by an autotrophic flagellate (Cryptomonas sp.) that represented, on average, 91% of total phytoplankton biomass. The lowest phytoplankton biomasses were associated with the strongly mixed, saline, cold waters characteristic of the Weddell Sea water mass, and with the waters influenced by ice melt from the Bellingshausen Sea. The highest biomasses were found in the confluence of these water masses, where a front develops. Community composition also differed among water masses, with eukariotic picoplankton and diatoms having their highest relative contribution to community biomass in stations with Bellingshausen Sea and Weddell Sea water masses, whereas the abundance of Cryptomonas sp. was highest at the confluence of these waters. These results indicate that mesoscale processes, that determine water mass distribution, are of paramount importance in controlling the time and space variability of Antarctic phytoplankton.
Original language | English (US) |
---|---|
Pages (from-to) | 15-20 |
Number of pages | 6 |
Journal | Polar Biology |
Volume | 15 |
Issue number | 1 |
DOIs | |
State | Published - Jan 1995 |
Externally published | Yes |
ASJC Scopus subject areas
- General Agricultural and Biological Sciences