TY - JOUR
T1 - Vasoactive intestinal peptide binding sites and fibers in the brain of the pigeon Columba livia
T2 - An autoradiographic and immunohistochemical study
AU - Hof, Patrick R.
AU - Dietl, Monika M.
AU - Charnay, Yves
AU - Martin, Jean‐Luc ‐L
AU - Bouras, Constantin
AU - Palacios, José M.
AU - Magistretti, Pierre J.
PY - 1991/3/15
Y1 - 1991/3/15
N2 - The distribution of vasoactive intestinal peptide (VIP) binding sites in the pigeon brain was examined by in vitro autoradiography on slide‐mounted sections. A fully characterized monoiodinated form of VIP, which maintains the biological activity of the native peptide, was used throughout this study. The highest densities of binding sites were observed in the hyperstriatum dorsale, archistriatum, auditory field L of neostriatum, area corticoidea dorsolateralis and temporo‐parieto‐occipitalis, area parahippocampalis, tectum opticum, nucleus dorsomedialis anterior thalami, and in the periventricular area of the hypothalamus. Lower densities of specific binding occurred in the neostriatum, hyperstriatum ventrale and nucleus septi lateralis, dorsolateral area of the thalamus, and lateral and posteromedial hypothalamus. Very low to background levels of VIP binding were detected in the ectostriatum, paleostriatum primitivum, paleostriatum augmentatum, lobus parolfactorius, nucleus accumbens, most of the brainstem, and the cerebellum. The distribution of VTP‐containing fibers and terminals was examined by indirect immunofluorescence using a polyclonal antibody against porcine VIP. Fibers and terminals were observed in the area corticoidea dorsolateralis, area parahippocampalis, hippocampus, hyperstriatum accessorium, hyperstriatum dorsale, archistriatum, tuberculum olfactorium, nuclei dorsolateralis and dorsomedialis of the thalamus, and throughout the hypothalamus and the median eminence. Long projecting fibers were visualized in the tractus septohippocampalis. In the brainstem VIP immunoreactive fibers and terminals were observed mainly in the substantia grisea centralis, fasciculus longitudinalis medialis, lemniscus lateralis, and in the area surrounding the nuclei of the 7th, 9th, and 10th cranial nerves. The correlation between the distribution of VIP binding sites and immunoreactive fibers and terminals was assessed in a restricted number of regions. A qualitatively good matching was found in the area corticoidea dorsolateralis, hyperstriatum dorsale, hyperstriatum accessorium, nucleus septi lateralis, nuclei dorsomedialis and dorsolateralis thalami, and in some hypothalamic areas. A striking mismatch occurred in the hyperstriatum ventrale, neostriatum, tectum opticum (high to moderate density of binding sites but only few immunoreactive profiles), and in the tuberculum olfactorium, median eminence, and spinal cord (lower density of binding sites but abundant immunoreactive profiles). The paleostriatum, lobus parolfactorius, and ectostriatum were virtually devoid of both binding sites and immunoreactive profiles. The results are discussed in relationto the know action of VIP in the rodent and avian brain and are compared with previous observations on the distribution of VIP binding in the central nervous system of other vertebrates.
AB - The distribution of vasoactive intestinal peptide (VIP) binding sites in the pigeon brain was examined by in vitro autoradiography on slide‐mounted sections. A fully characterized monoiodinated form of VIP, which maintains the biological activity of the native peptide, was used throughout this study. The highest densities of binding sites were observed in the hyperstriatum dorsale, archistriatum, auditory field L of neostriatum, area corticoidea dorsolateralis and temporo‐parieto‐occipitalis, area parahippocampalis, tectum opticum, nucleus dorsomedialis anterior thalami, and in the periventricular area of the hypothalamus. Lower densities of specific binding occurred in the neostriatum, hyperstriatum ventrale and nucleus septi lateralis, dorsolateral area of the thalamus, and lateral and posteromedial hypothalamus. Very low to background levels of VIP binding were detected in the ectostriatum, paleostriatum primitivum, paleostriatum augmentatum, lobus parolfactorius, nucleus accumbens, most of the brainstem, and the cerebellum. The distribution of VTP‐containing fibers and terminals was examined by indirect immunofluorescence using a polyclonal antibody against porcine VIP. Fibers and terminals were observed in the area corticoidea dorsolateralis, area parahippocampalis, hippocampus, hyperstriatum accessorium, hyperstriatum dorsale, archistriatum, tuberculum olfactorium, nuclei dorsolateralis and dorsomedialis of the thalamus, and throughout the hypothalamus and the median eminence. Long projecting fibers were visualized in the tractus septohippocampalis. In the brainstem VIP immunoreactive fibers and terminals were observed mainly in the substantia grisea centralis, fasciculus longitudinalis medialis, lemniscus lateralis, and in the area surrounding the nuclei of the 7th, 9th, and 10th cranial nerves. The correlation between the distribution of VIP binding sites and immunoreactive fibers and terminals was assessed in a restricted number of regions. A qualitatively good matching was found in the area corticoidea dorsolateralis, hyperstriatum dorsale, hyperstriatum accessorium, nucleus septi lateralis, nuclei dorsomedialis and dorsolateralis thalami, and in some hypothalamic areas. A striking mismatch occurred in the hyperstriatum ventrale, neostriatum, tectum opticum (high to moderate density of binding sites but only few immunoreactive profiles), and in the tuberculum olfactorium, median eminence, and spinal cord (lower density of binding sites but abundant immunoreactive profiles). The paleostriatum, lobus parolfactorius, and ectostriatum were virtually devoid of both binding sites and immunoreactive profiles. The results are discussed in relationto the know action of VIP in the rodent and avian brain and are compared with previous observations on the distribution of VIP binding in the central nervous system of other vertebrates.
KW - VIP
KW - autoradiography
KW - aviian brain
KW - immunohistochemistry
KW - neuropeptides
UR - http://www.scopus.com/inward/record.url?scp=0026063651&partnerID=8YFLogxK
U2 - 10.1002/cne.903050304
DO - 10.1002/cne.903050304
M3 - Article
C2 - 1645376
AN - SCOPUS:0026063651
SN - 0021-9967
VL - 305
SP - 393
EP - 411
JO - Journal of Comparative Neurology
JF - Journal of Comparative Neurology
IS - 3
ER -