Abstract
Microbial fuel cells (MFCs) are operated with solutions containing various chemical species required for the growth of electrochemically active microorganisms including nutrients and vitamins, substrates, and chemical buffers. Many different buffers are used in laboratory media, but the effects of these buffers and their inherent electrolyte conductivities have not been examined relative to current generation in MFCs. We investigated the effect of several common buffers (phosphate, MES, HEPES, and PIPES) on power production in single chambered MFCs compared to a non-buffered control. At the same concentrations the buffers produced different solution conductivities which resulted in different ohmic resistances and power densities. Increasing the solution conductivities to the same values using NaCl produced comparable power densities for all buffers. Very large increases in conductivity resulted in a rapid voltage drop at high current densities. Our results suggest that solution conductivity at a specific pH for each buffer is more important in MFC studies than the buffer itself given relatively constant pH conditions. Based on our analysis of internal resistance and a set neutral pH, phosphate and PIPES are the most useful buffers of those examined here because pH was maintained close to the pKa of the buffer, maximizing the ability of the buffer to contribute to increase current generation at high power densities. © 2009 Elsevier B.V. All rights reserved.
Original language | English (US) |
---|---|
Pages (from-to) | 1155-1159 |
Number of pages | 5 |
Journal | Biosensors and Bioelectronics |
Volume | 25 |
Issue number | 5 |
DOIs | |
State | Published - Jan 15 2010 |
Externally published | Yes |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledged KAUST grant number(s): KUS-11-003-13
Acknowledgements: This research was supported by the National Science Foundation grants CBET-0730359, Award KUS-11-003-13 by King Abdullah University of Science and Technology (KAUST), and by Brain Korea 21 project in 2008.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.