TY - JOUR
T1 - Variability of tsunami inundation footprints considering stochastic scenarios based on a single rupture model: Application to the 2011 Tohoku earthquake
AU - Goda, Katsuichiro
AU - Yasuda, Tomohiro
AU - Mori, Nobuhito
AU - Mai, Paul Martin
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2015/6/30
Y1 - 2015/6/30
N2 - The sensitivity and variability of spatial tsunami inundation footprints in coastal cities and towns due to a megathrust subduction earthquake in the Tohoku region of Japan are investigated by considering different fault geometry and slip distributions. Stochastic tsunami scenarios are generated based on the spectral analysis and synthesis method with regards to an inverted source model. To assess spatial inundation processes accurately, tsunami modeling is conducted using bathymetry and elevation data with 50 m grid resolutions. Using the developed methodology for assessing variability of tsunami hazard estimates, stochastic inundation depth maps can be generated for local coastal communities. These maps are important for improving disaster preparedness by understanding the consequences of different situations/conditions, and by communicating uncertainty associated with hazard predictions. The analysis indicates that the sensitivity of inundation areas to the geometrical parameters (i.e., top-edge depth, strike, and dip) depends on the tsunami source characteristics and the site location, and is therefore complex and highly nonlinear. The variability assessment of inundation footprints indicates significant influence of slip distributions. In particular, topographical features of the region, such as ria coast and near-shore plain, have major influence on the tsunami inundation footprints.
AB - The sensitivity and variability of spatial tsunami inundation footprints in coastal cities and towns due to a megathrust subduction earthquake in the Tohoku region of Japan are investigated by considering different fault geometry and slip distributions. Stochastic tsunami scenarios are generated based on the spectral analysis and synthesis method with regards to an inverted source model. To assess spatial inundation processes accurately, tsunami modeling is conducted using bathymetry and elevation data with 50 m grid resolutions. Using the developed methodology for assessing variability of tsunami hazard estimates, stochastic inundation depth maps can be generated for local coastal communities. These maps are important for improving disaster preparedness by understanding the consequences of different situations/conditions, and by communicating uncertainty associated with hazard predictions. The analysis indicates that the sensitivity of inundation areas to the geometrical parameters (i.e., top-edge depth, strike, and dip) depends on the tsunami source characteristics and the site location, and is therefore complex and highly nonlinear. The variability assessment of inundation footprints indicates significant influence of slip distributions. In particular, topographical features of the region, such as ria coast and near-shore plain, have major influence on the tsunami inundation footprints.
UR - http://hdl.handle.net/10754/558711
UR - http://doi.wiley.com/10.1002/2014JC010626
UR - http://www.scopus.com/inward/record.url?scp=85027956882&partnerID=8YFLogxK
U2 - 10.1002/2014JC010626
DO - 10.1002/2014JC010626
M3 - Article
SN - 2169-9275
VL - 120
SP - 4552
EP - 4575
JO - Journal of Geophysical Research: Oceans
JF - Journal of Geophysical Research: Oceans
IS - 6
ER -