Abstract
The use of ternary organic semiconducting blends is recognized as an effective strategy to boost the performance of polymer solar cells (PSCs) by increasing the photocurrent while minimizing voltage losses. Yet, the scarcity of suitable donors with a deep highest occupied molecular orbital (HOMO) level poses a challenge in extending this strategy to ternary systems based on two polymers. Here, we address this challenge by the synthesis of a new donor polymer (PM7-Si), which is akin to the well-known PM6 but has a deeper HOMO level. PM7-Si is utilized as the third component to enhance the performance of the best-in-class binary system of PM6:BTP-eC9, leading to simultaneous improvements in the efficiency (17.7%), open-circuit voltage (0.864 V), and fill factor (77.6%). These decisively enhanced features are attributed to the efficient carrier transport, improved stacking order, and morphology. Our results highlight the use of two polymer donors as a promising strategy toward high-performance ternary PSCs.
Original language | English (US) |
---|---|
Journal | Chemistry of Materials |
DOIs | |
State | Published - Sep 7 2021 |
Bibliographical note
KAUST Repository Item: Exported on 2021-09-10Acknowledged KAUST grant number(s): OSR-2018-CARF/CCF-3079, OSR-2019-CRG8-4095.3
Acknowledgements: The authors thank the Swedish Research Council (2016-06146, 2019-04683), the Swedish Research Council Formas, and the Knut and Alice Wallenberg Foundation (2017.0186, 2016.0059) for financial support. This work was also supported by the National Natural Science Foundation of China (51673031, 51573154), the Major Program of the Natural Science Research of Jiangsu Higher Education Institutions (18KJA480001), the Top-notch Academic Programs Project (TAPP) for Polymeric Materials Science and Engineering & the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, the Jiangsu Provincial Talents Project of High-Level Innovation and Entrepreneurship, and the Foundation of State Key Laboratory of Polymer Materials Engineering (sklpme2017-2-04). W.P. acknowledges the support by the China Scholarship Council and Y.L., A.N., L.T., and T.D.A. acknowledge the support by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No: OSR-2018-CARF/CCF-3079 and No: OSR-2019-CRG8-4095.3. A.N. and L.T. acknowledge support for the computational time granted from GRNET in the National HPC facility—ARIS—under project 9016-CREAM. H.Y.W acknowledges the financial support from the National Research Foundation (NRF) of Korea (2019R1A6A1A11044070).
ASJC Scopus subject areas
- Materials Chemistry
- General Chemical Engineering
- General Chemistry