Using Genotyping-By-Sequencing (GBS) for genomic discovery in cultivated oat

Yung Fen Huang, Jesse A. Poland, Charlene P. Wight, Eric W. Jackson, Nicholas A. Tinker

Research output: Contribution to journalArticlepeer-review

147 Scopus citations

Abstract

Advances in next-generation sequencing offer high-throughput and cost-effective genotyping alternatives, including genotyping-by-sequencing (GBS). Results have shown that this methodology is efficient for genotyping a variety of species, including those with complex genomes. To assess the utility of GBS in cultivated hexaploid oat (Avena sativa L.), seven bi-parental mapping populations and diverse inbred lines from breeding programs around the world were studied. We examined technical factors that influence GBS SNP calls, established a workflow that combines two bioinformatics pipelines for GBS SNP calling, and provided a nomenclature for oat GBS loci. The high-throughput GBS system enabled us to place 45,117 loci on an oat consensus map, thus establishing a positional reference for further genomic studies. Using the diversity lines, we estimated that a minimum density of one marker per 2 to 2.8 cM would be required for genome-wide association studies (GWAS), and GBS markers met this density requirement in most chromosome regions. We also demonstrated the utility of GBS in additional diagnostic applications related to oat breeding. We conclude that GBS is a powerful and useful approach, which will have many additional applications in oat breeding and genomic studies. © 2014 Huang et al.
Original languageEnglish (US)
JournalPLoS ONE
Volume9
Issue number7
DOIs
StatePublished - Jul 21 2014
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2022-09-13

ASJC Scopus subject areas

  • General Agricultural and Biological Sciences
  • General Biochemistry, Genetics and Molecular Biology
  • General Medicine

Fingerprint

Dive into the research topics of 'Using Genotyping-By-Sequencing (GBS) for genomic discovery in cultivated oat'. Together they form a unique fingerprint.

Cite this