Use of Pyrolyzed Iron Ethylenediaminetetraacetic Acid Modified Activated Carbon as Air–Cathode Catalyst in Microbial Fuel Cells

Xue Xia, Fang Zhang, Xiaoyuan Zhang, Peng Liang, Xia Huang, Bruce E. Logan

Research output: Contribution to journalArticlepeer-review

92 Scopus citations

Abstract

Activated carbon (AC) is a cost-effective catalyst for the oxygen reduction reaction (ORR) in air-cathode microbial fuel cells (MFCs). To enhance the catalytic activity of AC cathodes, AC powders were pyrolyzed with iron ethylenediaminetetraacetic acid (FeEDTA) at a weight ratio of FeEDTA:AC = 0.2:1. MFCs with FeEDTA modified AC cathodes and a stainless steel mesh current collector produced a maximum power density of 1580 ± 80 mW/m2, which was 10% higher than that of plain AC cathodes (1440 ± 60 mW/m 2) and comparable to Pt cathodes (1550 ± 10 mW/m2). Further increases in the ratio of FeEDTA:AC resulted in a decrease in performance. The durability of AC-based cathodes was much better than Pt-catalyzed cathodes. After 4.5 months of operation, the maximum power density of Pt cathode MFCs was 50% lower than MFCs with the AC cathodes. Pyridinic nitrogen, quaternary nitrogen and iron species likely contributed to the increased activity of FeEDTA modified AC. These results show that pyrolyzing AC with FeEDTA is a cost-effective and durable way to increase the catalytic activity of AC. © 2013 American Chemical Society.
Original languageEnglish (US)
Pages (from-to)7862-7866
Number of pages5
JournalACS Applied Materials & Interfaces
Volume5
Issue number16
DOIs
StatePublished - Aug 15 2013
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-I1-003-13
Acknowledgements: The authors thank Dr. Jennifer Gray and Dr. Vince Bojan for their assistance with XPS measurement and analysis. This research was supported by Award KUS-I1-003-13 from the King Abdullah University of Science and Technology (KAUST), the International Program of MOST (2013DFG92240), and the Program for Changjiang Scholars and Innovative Research Team in University.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.

Fingerprint

Dive into the research topics of 'Use of Pyrolyzed Iron Ethylenediaminetetraacetic Acid Modified Activated Carbon as Air–Cathode Catalyst in Microbial Fuel Cells'. Together they form a unique fingerprint.

Cite this