Unravelling the interplay of geometrical, magnetic and electronic properties of metal-doped graphene nanomeshes

Mohamed M. Fadlallah, Ahmed A. Maarouf, Udo Schwingenschlögl, Ulrich Eckern

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Graphene nanomeshes (GNMs), formed by creating a superlattice of pores in graphene, possess rich physical and chemical properties. Many of these properties are determined by the pore geometry. In this work, we use first principles calculations to study the magnetic and electronic properties of metal-doped nitrogen-passivated GNMs. We find that the magnetic behaviour is dependent on the pore shape (trigonal versus hexagonal) as dictated by the number of covalent bonds formed between the 3d metal and the passivating N atoms. We also find that Cr and V doped trigonal-pore GNMs, and Ti doped GNMs are the most favourable for spintronic applications. The calculated magnetic properties of Fe-doped GNMs compare well with recent experimental observations. The studied systems are useful as spin filters and chemical sensors.
Original languageEnglish (US)
Pages (from-to)055301
JournalJournal of Physics: Condensed Matter
Volume29
Issue number5
DOIs
StatePublished - Dec 2 2016

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: We acknowledge financial support by the Deutsche Forschungsgemeinschaft (through TRR 80). The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST).

Fingerprint

Dive into the research topics of 'Unravelling the interplay of geometrical, magnetic and electronic properties of metal-doped graphene nanomeshes'. Together they form a unique fingerprint.

Cite this