Ultrathin graphdiyne film on graphene through solution-phase van der waals epitaxy

Xin Gao, Yihan Zhu, Ding Yi, Jingyuan Zhou, Shishu Zhang, Chen Yin, Feng Ding, Shuqing Zhang, Xiaohui Yi, Jizheng Wang, Lianming Tong, Yu Han, Zhongfan Liu, Jin Zhang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

224 Scopus citations

Abstract

Graphdiyne (GDY) is an ordered two-dimensional (2D) carbon allotrope comprising sp- and sp2-hybridized carbon atoms with high degrees of p-conjugation, which features a natural band gap and superior electric properties. However, the synthesis of one- or few-layer GDY remains challenging because of the free rotation around alkyne-aryl single bonds and the lack of thickness control. We report the facile synthesis of an ultrathin single-crystalline GDY film on graphene through a solution-phase van der Waals epitaxial strategy. The weak admolecule-substrate interaction at the heterojunction drastically relaxes the large lattice mismatch between GDY and graphene. It allows the fast in-plane coupling of admolecules and slow out-of-plane growth toward the formation of an incommensurately stacked heterostructure, which is composed of single-layer graphene and few-layer ABC-stacked GDY, as directly observed by electron microscopy and identified from Raman fingerprints. This study provides a general route not only to the bottom-up synthesis of intriguing 2D acetylenic carbon allotropes but also to the device fabrication for the direct measurement of their intrinsic electrical, mechanical, and thermal properties.

Original languageEnglish (US)
Article numbereaat6378
JournalSCIENCE ADVANCES
Volume4
Issue number7
DOIs
StatePublished - Jul 6 2018

Bibliographical note

Publisher Copyright:
Copyright © 2018 The Authors.

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Ultrathin graphdiyne film on graphene through solution-phase van der waals epitaxy'. Together they form a unique fingerprint.

Cite this