TY - JOUR
T1 - Ultrasound-assisted synthesis of mesoporous β-Ni(OH) 2 and NiO nano-sheets using ionic liquids
AU - Alammar, Tarek
AU - Shekhah, Osama
AU - Wohlgemuth, Jon
AU - Mudring, Anja Verena
PY - 2012/9/21
Y1 - 2012/9/21
N2 - Via a facile ultrasound synthesis from nickel acetate and sodium hydroxide with ionic liquids as the solvent and template it is possible to obtain nano-β-Ni(OH) 2 of various dimensionalities depending on the reaction conditions with the ionic liquid (IL) being the most important factor. Scanning electron microscopy (SEM) imaging showed β-Ni(OH) 2 to form as nanosheets, nanorods and nanospheres depending on the IL. ILs with strong to moderate hydrogen bonding capability like [C 3mimOH][Tf 2N] (1-(3-hydroxypropyl)-3-methylimidazolium bis(trifluoromethanesulfonylamide)), [C 4mim][Tf 2N] (1-butyl-3-methylimidazolium bis(trifluoromethanesulfonylamide)) and [Edimim][Tf 2N] (1-ethyl-2,3-diemethylimidazolium bis(trifluoromethanesulfonylamide)) lead to the formation of nanosheets whilst [Py 4][Tf 2N] (butyl-pyridinium bis(trifluoromethanesulfonylamide)) leads to nanoparticles and [N 1888][Tf 2N] (methyltrioctylammonium bis(trifluoromethanesulfonylamide)) to nanorods. Subsequent calcination of the materials at elevated temperatures (285-425 °C) leads to the conversion of β-Ni(OH) 2 to NiO under preservation of the nanostructure. Scanning electron microscopy (SEM), X-ray diffraction (XRD), TG-DTA, X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray spectroscopy (EDX) were used to observe the morphology, crystallinity, and chemical composition in more detail. Mesoporous NiO nanosheets obtained in [C 4mim][Tf 2N] possess an exceptionally high surface area of 141.28 m 2 g -1 and a pore volume of 0.2 cm 3 g -1 at 285 °C. As a result of calcination at 425 °C the surface area decreased to 92.84 m 2 g -1, but the pore volume increased to 0.48 cm 3 g -1. In addition, the product has an extraordinarily high saturation magnetization of 1.38 emu g -1, a coercivity of 117 Oe and an excellent specific capacitance of 199.4 F g -1 which renders the material highly interesting for application in supercapacitors.
AB - Via a facile ultrasound synthesis from nickel acetate and sodium hydroxide with ionic liquids as the solvent and template it is possible to obtain nano-β-Ni(OH) 2 of various dimensionalities depending on the reaction conditions with the ionic liquid (IL) being the most important factor. Scanning electron microscopy (SEM) imaging showed β-Ni(OH) 2 to form as nanosheets, nanorods and nanospheres depending on the IL. ILs with strong to moderate hydrogen bonding capability like [C 3mimOH][Tf 2N] (1-(3-hydroxypropyl)-3-methylimidazolium bis(trifluoromethanesulfonylamide)), [C 4mim][Tf 2N] (1-butyl-3-methylimidazolium bis(trifluoromethanesulfonylamide)) and [Edimim][Tf 2N] (1-ethyl-2,3-diemethylimidazolium bis(trifluoromethanesulfonylamide)) lead to the formation of nanosheets whilst [Py 4][Tf 2N] (butyl-pyridinium bis(trifluoromethanesulfonylamide)) leads to nanoparticles and [N 1888][Tf 2N] (methyltrioctylammonium bis(trifluoromethanesulfonylamide)) to nanorods. Subsequent calcination of the materials at elevated temperatures (285-425 °C) leads to the conversion of β-Ni(OH) 2 to NiO under preservation of the nanostructure. Scanning electron microscopy (SEM), X-ray diffraction (XRD), TG-DTA, X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray spectroscopy (EDX) were used to observe the morphology, crystallinity, and chemical composition in more detail. Mesoporous NiO nanosheets obtained in [C 4mim][Tf 2N] possess an exceptionally high surface area of 141.28 m 2 g -1 and a pore volume of 0.2 cm 3 g -1 at 285 °C. As a result of calcination at 425 °C the surface area decreased to 92.84 m 2 g -1, but the pore volume increased to 0.48 cm 3 g -1. In addition, the product has an extraordinarily high saturation magnetization of 1.38 emu g -1, a coercivity of 117 Oe and an excellent specific capacitance of 199.4 F g -1 which renders the material highly interesting for application in supercapacitors.
UR - http://www.scopus.com/inward/record.url?scp=84865020580&partnerID=8YFLogxK
U2 - 10.1039/c2jm32849f
DO - 10.1039/c2jm32849f
M3 - Article
AN - SCOPUS:84865020580
SN - 0959-9428
VL - 22
SP - 18252
EP - 18260
JO - Journal of Materials Chemistry
JF - Journal of Materials Chemistry
IS - 35
ER -