Abstract
We describe 5 μm squircle InGaN-based red, green, and blue (RGB) monochromatic micro-light-emitting diodes (μLEDs) with an interpitch of 4 μm by pixilation of conductive p-GaN using a H$_2$-plasma treatment. The p-GaN was passivated by H$_2$ plasma and prevented the current’s injection into the InGaN quantum wells below. We observed that InGaN-based red μLEDs exhibited a broader full width at half-maximum and larger peak wavelength blueshift at 11.5–115 A/cm$^2$ than the green/blue μLEDs. The on-wafer light output power density of the red μLEDs at a wavelength of 632 nm at 115 A/cm$^2$ was approximately 936 mW/cm$^2$, the highest value reported thus far for InGaN-based red μLEDs. This value was comparable with that of the green/blue μLEDs at 11.5 A/cm$^2$, indicating that the red μLEDs can satisfy the requirement of high brightness levels for specific displays. The color gamut based on InGaN RGB μLEDs covered 83.7% to 75.9% of the Rec. 2020 color space in the CIE 1931 diagram at 11.5 to 115 A/cm$^2$.
Original language | English (US) |
---|---|
Pages (from-to) | 2429 |
Journal | Photonics Research |
Volume | 9 |
Issue number | 12 |
DOIs | |
State | Published - Nov 15 2021 |
Bibliographical note
KAUST Repository Item: Exported on 2021-11-18Acknowledged KAUST grant number(s): BAS/1/1676-01-01
Acknowledgements: King Abdullah University of Science and Technology (BAS/1/1676-01-01).
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics