Ultralow Lattice Thermal Conductivity and Thermoelectric Properties of Monolayer Tl2O

Muhammad Sajjad, Nirpendra Singh, Shahid Sattar, Stefaan De Wolf, Udo Schwingenschlögl

Research output: Contribution to journalArticlepeer-review

62 Scopus citations

Abstract

We report first-principles results on the thermal and thermoelectric properties of monolayer Tl2O. The lattice thermal conductivity and electronic transport coefficients are obtained by semiclassical Boltzmann transport theory. Monolayer Tl2O is found to be a semiconductor with a direct band gap of 1.62 eV. The lattice thermal conductivity turns out to be ultralow, for example, 0.17 W/mK at 300 K. Combined with a high power factor, this results in excellent thermoelectric performance. For example, at 500 K the p-type and n-type thermoelectric figures of merit reach peak values of 0.96 and 0.94 at hole and electron concentrations of 1.2 × 1011 and 0.8 × 1011 cm–2, respectively.
Original languageEnglish (US)
Pages (from-to)3004-3008
Number of pages5
JournalACS Applied Energy Materials
Volume2
Issue number5
DOIs
StatePublished - Apr 30 2019

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST).

Fingerprint

Dive into the research topics of 'Ultralow Lattice Thermal Conductivity and Thermoelectric Properties of Monolayer Tl2O'. Together they form a unique fingerprint.

Cite this