Two-grid discretization techniques for linear and nonlinear PDEs

Research output: Contribution to journalArticlepeer-review

605 Scopus citations


A number of finite element discretization techniques based on two (or more) subspaces for nonlinear elliptic partial differential equations (PDEs) is presented. Convergence estimates are derived to justify the efficiency of these algorithms. With the new proposed techniques, solving a large class of nonlinear elliptic boundary value problems will not be much more difficult than the solution of one linearized equation. Similar techniques are also used to solve nonsymmetric and/or indefinite linear systems by solving symmetric positive definite (SPD) systems. For the analysis of these two-grid or multigrid methods, optimal script L signp error estimates are also obtained for the classic finite element discretizations.
Original languageEnglish (US)
Pages (from-to)1759-1777
Number of pages19
JournalSIAM Journal on Numerical Analysis
Issue number5
StatePublished - Jan 1 1996
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2023-02-15

ASJC Scopus subject areas

  • Numerical Analysis


Dive into the research topics of 'Two-grid discretization techniques for linear and nonlinear PDEs'. Together they form a unique fingerprint.

Cite this