Two-dimensional-materials-based transistors using hexagonal boron nitride dielectrics and metal gate electrodes with high cohesive energy

Yaqing Shen, Kaichen Zhu, Yiping Xiao, Dominic Waldhör, Abdulrahman H. Basher, Theresia Knobloch, Sebastian Pazos, Xianhu Liang, Wenwen Zheng, Yue Yuan, Juan B. Roldan, Udo Schwingenschlögl, He Tian, Huaqiang Wu, Thomas F. Schranghamer, Nicholas Trainor, Joan M. Redwing, Saptarshi Das, Tibor Grasser, Mario Lanza*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Two-dimensional (2D) semiconductors could potentially be used as channel materials in commercial field-effect transistors. However, the interface between 2D semiconductors and most gate dielectrics contains traps that degrade performance. Layered hexagonal boron nitride (h-BN) can form a defect-free interface with 2D semiconductors, but when prepared by industry-compatible methods—such as chemical vapour deposition (CVD)—the presence of native defects increases leakage current and reduces dielectric strength. Here we show that metal gate electrodes with a high cohesive energy—platinum and tungsten—can allow CVD-grown layered h-BN to be used as a gate dielectric in transistors. The electrodes can reduce the current across CVD-grown h-BN by a factor of around 500 compared to similar devices with gold electrodes and can provide a high dielectric strength of at least 25 MV cm−1. We examine the behaviour statistically across 867 devices, which includes a microchip based on complementary metal–oxide–semiconductor technology.

Original languageEnglish (US)
Pages (from-to)856-867
Number of pages12
JournalNature Electronics
Volume7
Issue number10
DOIs
StatePublished - Oct 2024

Bibliographical note

Publisher Copyright:
© The Author(s), under exclusive licence to Springer Nature Limited 2024.

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Two-dimensional-materials-based transistors using hexagonal boron nitride dielectrics and metal gate electrodes with high cohesive energy'. Together they form a unique fingerprint.

Cite this