TY - GEN
T1 - Two approaches for condensed-phase modeling in solid rocket motor flows
AU - Creta, F.
AU - Attili, Antonio
AU - Favini, B.
AU - Di Giacinto, M.
PY - 2008/12/1
Y1 - 2008/12/1
N2 - Modeling of the condensed phase in a solid rocket motor engine is typically accomplished via a two-fluid Eulerian approach or a direct Lagrangian approach. Each approach has its advantages and intrinsic disadvantages in terms of describing a polydispersed population of aluminum particles while it burns and convects within the carrier flow. A more unconventional approach is the Population Balance Equation (PBE) approach which solves a convection equation for a number density field, representative of the particulate phase. In the most general case the PBE is an integro-differential equation and can account for aerodynamic drag on particles, their combustion, breakage and agglomeration, via representative constitutive models. Here we will describe the PBE approach and will adopt it to simulate the aluminum particulate phase in a solid rocket engine. The results will be compared to those yielded by a more conventional Lagrangian approach. While the Lagrangian approach is spatially 3-dimensional, the PBE approach will adopt a quasi 1-dimensional assumption, leaving the extra two dimensions available for "internal" particle coordinates such as particle radius and velocity.
AB - Modeling of the condensed phase in a solid rocket motor engine is typically accomplished via a two-fluid Eulerian approach or a direct Lagrangian approach. Each approach has its advantages and intrinsic disadvantages in terms of describing a polydispersed population of aluminum particles while it burns and convects within the carrier flow. A more unconventional approach is the Population Balance Equation (PBE) approach which solves a convection equation for a number density field, representative of the particulate phase. In the most general case the PBE is an integro-differential equation and can account for aerodynamic drag on particles, their combustion, breakage and agglomeration, via representative constitutive models. Here we will describe the PBE approach and will adopt it to simulate the aluminum particulate phase in a solid rocket engine. The results will be compared to those yielded by a more conventional Lagrangian approach. While the Lagrangian approach is spatially 3-dimensional, the PBE approach will adopt a quasi 1-dimensional assumption, leaving the extra two dimensions available for "internal" particle coordinates such as particle radius and velocity.
UR - http://www.scopus.com/inward/record.url?scp=77957846486&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:77957846486
SN - 9781563479434
T3 - 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
BT - 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
T2 - 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
Y2 - 21 July 2008 through 23 July 2008
ER -