Tumour heterogeneity revealed by unsupervised decomposition of dynamic contrast-enhanced magnetic resonance imaging is associated with underlying gene expression patterns and poor survival in breast cancer patients.

Ming Fan, Pingping Xia, Bin Liu, Lin Zhang, Yue Wang, Xin Gao, Lihua Li

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

BACKGROUND:Heterogeneity is a common finding within tumours. We evaluated the imaging features of tumours based on the decomposition of tumoural dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data to identify their prognostic value for breast cancer survival and to explore their biological importance. METHODS:Imaging features (n = 14), such as texture, histogram distribution and morphological features, were extracted to determine their associations with recurrence-free survival (RFS) in patients in the training cohort (n = 61) from The Cancer Imaging Archive (TCIA). The prognostic value of the features was evaluated in an independent dataset of 173 patients (i.e. the reproducibility cohort) from the TCIA I-SPY 1 TRIAL dataset. Radiogenomic analysis was performed in an additional cohort, the radiogenomic cohort (n = 87), using DCE-MRI from TCGA-BRCA and corresponding gene expression data from The Cancer Genome Atlas (TCGA). The MRI tumour area was decomposed by convex analysis of mixtures (CAM), resulting in 3 components that represent plasma input, fast-flow kinetics and slow-flow kinetics. The prognostic MRI features were associated with the gene expression module in which the pathway was analysed. Furthermore, a multigene signature for each prognostic imaging feature was built, and the prognostic value for RFS and overall survival (OS) was confirmed in an additional cohort from TCGA. RESULTS:Three image features (i.e. the maximum probability from the precontrast MR series, the median value from the second postcontrast series and the overall tumour volume) were independently correlated with RFS (p values of 0.0018, 0.0036 and 0.0032, respectively). The maximum probability feature from the fast-flow kinetics subregion was also significantly associated with RFS and OS in the reproducibility cohort. Additionally, this feature had a high correlation with the gene expression module (r = 0.59), and the pathway analysis showed that Ras signalling, a breast cancer-related pathway, was significantly enriched (corrected p value = 0.0044). Gene signatures (n = 43) associated with the maximum probability feature were assessed for associations with RFS (p = 0.035) and OS (p = 0.027) in an independent dataset containing 1010 gene expression samples. Among the 43 gene signatures, Ras signalling was also significantly enriched. CONCLUSIONS:Dynamic pattern deconvolution revealed that tumour heterogeneity was associated with poor survival and cancer-related pathways in breast cancer.
Original languageEnglish (US)
JournalBreast cancer research : BCR
Volume21
Issue number1
DOIs
StatePublished - Oct 17 2019

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): URF/1/3450-01
Acknowledgements: The authors thank The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) for providing the imaging data and the corresponding gene expression data that were utilized in this study

Fingerprint

Dive into the research topics of 'Tumour heterogeneity revealed by unsupervised decomposition of dynamic contrast-enhanced magnetic resonance imaging is associated with underlying gene expression patterns and poor survival in breast cancer patients.'. Together they form a unique fingerprint.

Cite this