@inproceedings{37445c60948c4ae4a303f527ad0cc477,
title = "Transient control of combustion phasing and Lambda in a 6-cylinder port-injected natural-gas engine",
abstract = "Fuel economy and emissions are the two central parameters in heavy duty engines. High EGR rates combined with turbocharging has been identified as a promising way to increase the maximum load and efficiency of heavy duty spark ignition engines. With stoichiometric conditions a three way catalyst can be used which keeps the regulated emissions at very low levels. The Lambda window which results in very low emissions is very narrow. This issue is more complex with transient operation resulting in losing brake efficiency and also catalyst converting efficiency. This paper presents different control strategies to maximize the reliability for maintaining efficiency and emissions levels under transient conditions. Different controllers are developed and tested successfully on a heavy duty 6-cylinder port injected natural gas engine. Model Predictive Control (MPC) was used to control lambda which was modeled using System Identification. Furthermore, a Proportional Integral (PI) regulator combined with a feedforward map for obtaining Maximum Brake Torque (MBT) timing was applied. The results show that excellent steady-state and transient performance can be achieved.",
author = "Mehrzad Kaiadi and Magnus Lewander and Patrick Borgqvist and Per Tunestal and Bengt Johansson",
year = "2009",
doi = "10.1115/ICES2009-76004",
language = "English (US)",
isbn = "9780791843406",
series = "Proceedings of the Spring Technical Conference of the ASME Internal Combustion Engine Division",
pages = "655--662",
booktitle = "Proceedings of the 2009 Spring Technical Conference of the ASME Internal Combustion Engine Division",
note = "2009 ASME Internal Combustion Engine Division Spring Technical Conference ; Conference date: 03-05-2009 Through 06-05-2009",
}