Towards Interpretable Deep Local Learning with Successive Gradient Reconciliation

Yibo Yang*, Xiaojie Li, Motasem Alfarra, Hasan Hammoud, Adel Bibi, Philip Torr, Bernard Ghanem

*Corresponding author for this work

Research output: Contribution to conferencePaperpeer-review

Abstract

Relieving the reliance of neural network training on a global back-propagation (BP) has emerged as a notable research topic due to the biological implausibility and huge memory consumption caused by BP. Among the existing solutions, local learning optimizes gradient-isolated modules of a neural network with local errors and has been proved to be effective even on large-scale datasets. However, the reconciliation among local errors has never been investigated. In this paper, we first theoretically study non-greedy layer-wise training and show that the convergence cannot be assured when the local gradient in a module w.r.t. its input is not reconciled with the local gradient in the previous module w.r.t. its output. Inspired by the theoretical result, we further propose a local training strategy that successively regularizes the gradient reconciliation between neighboring modules without breaking gradient isolation or introducing any learnable parameters. Our method can be integrated into both local-BP and BP-free settings. In experiments, we achieve significant performance improvements compared to previous methods. Particularly, our method for CNN and Transformer architectures on ImageNet is able to attain a competitive performance with global BP, saving more than 40% memory consumption.

Original languageEnglish (US)
Pages56196-56215
Number of pages20
StatePublished - 2024
Event41st International Conference on Machine Learning, ICML 2024 - Vienna, Austria
Duration: Jul 21 2024Jul 27 2024

Conference

Conference41st International Conference on Machine Learning, ICML 2024
Country/TerritoryAustria
CityVienna
Period07/21/2407/27/24

Bibliographical note

Publisher Copyright:
Copyright 2024 by the author(s)

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Towards Interpretable Deep Local Learning with Successive Gradient Reconciliation'. Together they form a unique fingerprint.

Cite this