Abstract
Deep Neural Networks (DNNs) lack robustness against imperceptible perturbations to their input. Face Recognition Models (FRMs) based on DNNs inherit this vulnerability. We propose a methodology for assessing and characterizing the robustness of FRMs against semantic perturbations to their input. Our methodology causes FRMs to malfunction by designing adversarial attacks that search for identity-preserving modifications to faces. In particular, given a face, our attacks find identity-preserving variants of the face such that an FRM fails to recognize the images belonging to the same identity. We model these identity-preserving semantic modifications via direction- and magnitude-constrained perturbations in the latent space of StyleGAN. We further propose to characterize the semantic robustness of an FRM by statistically describing the perturbations that induce the FRM to malfunction. Finally, we combine our methodology with a certification technique, thus providing (i) theoretical guarantees on the performance of an FRM, and (ii) a formal description of how an FRM may model the notion of face identity.
Original language | English (US) |
---|---|
Title of host publication | Proceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023 |
Publisher | IEEE Computer Society |
Pages | 315-325 |
Number of pages | 11 |
ISBN (Electronic) | 9798350302493 |
DOIs | |
State | Published - 2023 |
Event | 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023 - Vancouver, Canada Duration: Jun 18 2023 → Jun 22 2023 |
Publication series
Name | IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops |
---|---|
Volume | 2023-June |
ISSN (Print) | 2160-7508 |
ISSN (Electronic) | 2160-7516 |
Conference
Conference | 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023 |
---|---|
Country/Territory | Canada |
City | Vancouver |
Period | 06/18/23 → 06/22/23 |
Bibliographical note
Publisher Copyright:© 2023 IEEE.
ASJC Scopus subject areas
- Computer Vision and Pattern Recognition
- Electrical and Electronic Engineering