Towards accurate prediction of patient length of stay at emergency department: a GAN-driven deep learning framework

Farid Kadri, Abdelkader Dairi, Fouzi Harrou, Ying Sun

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Recently, the hospital systems face a high influx of patients generated by several events, such as seasonal flows or health crises related to epidemics (e.g., COVID’19). Despite the extent of the care demands, hospital establishments, particularly emergency departments (EDs), must admit patients for medical treatments. However, the high patient influx often increases patients’ length of stay (LOS) and leads to overcrowding problems within the EDs. To mitigate this issue, hospital managers need to predict the patient’s LOS, which is an essential indicator for assessing ED overcrowding and the use of the medical resources (allocation, planning, utilization rates). Thus, accurately predicting LOS is necessary to improve ED management. This paper proposes a deep learning-driven approach for predicting the patient LOS in ED using a generative adversarial network (GAN) model. The GAN-driven approach flexibly learns relevant information from linear and nonlinear processes without prior assumptions on data distribution and significantly enhances the prediction accuracy. Furthermore, we classified the predicted patients’ LOS according to time spent at the pediatric emergency department (PED) to further help decision-making and prevent overcrowding. The experiments were conducted on actual data obtained from the PED in Lille regional hospital center, France. The GAN model results were compared with other deep learning models, including deep belief networks, convolutional neural network, stacked auto-encoder, and four machine learning models, namely support vector regression, random forests, adaboost, and decision tree. Results testify that deep learning models are suitable for predicting patient LOS and highlight GAN’s superior performance than the other models.
Original languageEnglish (US)
JournalJournal of Ambient Intelligence and Humanized Computing
DOIs
StatePublished - Feb 3 2022

Bibliographical note

KAUST Repository Item: Exported on 2022-02-11
Acknowledged KAUST grant number(s): OSR-2019-CRG7-3800
Acknowledgements: This publication is based upon work supported by King Abdullah University of Science and Technology (KAUST), Office of Sponsored Research (OSR) under Award No: OSR-2019-CRG7-3800.

ASJC Scopus subject areas

  • General Computer Science

Fingerprint

Dive into the research topics of 'Towards accurate prediction of patient length of stay at emergency department: a GAN-driven deep learning framework'. Together they form a unique fingerprint.

Cite this