Toward autonomic grids: Analyzing the job flow with affinity streaming

Xiangliang Zhang, Cyril Furtlehner, Julien Perez, Cecile Germain-Renaud, Michèle Sebag

Research output: Chapter in Book/Report/Conference proceedingConference contribution

21 Scopus citations


The Afinity Propagation (AP) clustering algorithm proposed by Frey and Dueck (2007) provides an understandable, nearly optimal summary of a dataset, albeit with quadratic compu- tational complexity. This paper, motivated by Autonomic Computing, extends AP to the data streaming framework. Firstly a hierarchical strategy is used to reduce the complex- ity to O(N 1+ε); the distortion loss incurred is analyzed in relation with the dimension of the data items. Secondly, a coupling with a change detection test is used to cope with non-stationary data distribution, and rebuild the model as needed. The presented approach Strap is applied to the stream of jobs submitted to the EGEE Grid, providing an understandable description of the job ow and enabling the system administrator to spot online some sources of fail- ures. Copyright 2009 ACM.
Original languageEnglish (US)
Title of host publicationProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
Number of pages9
StatePublished - Nov 16 2009
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2023-09-20


Dive into the research topics of 'Toward autonomic grids: Analyzing the job flow with affinity streaming'. Together they form a unique fingerprint.

Cite this