Toward Annealing-Stable Molybdenum-Oxide-Based Hole-Selective Contacts For Silicon Photovoltaics

Stephanie Essig, Julie Dréon, Esteban Rucavado, Mathias Mews, Takashi Koida, Mathieu Boccard, Jérémie Werner, Jonas Geissbühler, Philipp Löper, Monica Morales-Masis, Lars Korte, Stefaan De Wolf, Christophe Balllif

Research output: Contribution to journalArticlepeer-review

50 Scopus citations

Abstract

Molybdenum oxide (MoOX) combines a high work function with broadband optical transparency. Sandwiched between a hydrogenated intrinsic amorphous silicon passivation layer and a transparent conductive oxide, this material allows a highly efficient hole-selective front contact stack for crystalline silicon solar cells. However, hole extraction from the Si wafer and transport through this stack degrades upon annealing at 190 °C, which is needed to cure the screen-printed Ag metallization applied to typical Si solar cells. Here, we show that effusion of hydrogen from the adjacent layers is a likely cause for this degradation, highlighting the need for hydrogen-lean passivation layers when using such metal-oxide-based carrier-selective contacts. Pre-MoOX-deposition annealing of the passivating a-Si:H layer is shown to be a straightforward approach to manufacturing MoOX-based devices with high fill factors using screen-printed metallization cured at 190 °C.
Original languageEnglish (US)
Pages (from-to)1700227
JournalSolar RRL
Volume2
Issue number4
DOIs
StatePublished - Feb 21 2018

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The authors would like to thank Raphaël Monnard and Guillaume Charitat from EPFL and Nicolas Badel, Silvia Martin de Nicolas and Fabien Debrot from CSEM for work performed in the context of this publication. Furthermore, we thank Davide Sacchetto and Sylvain Nicolay from CSEM, and Andres Cuevas from ANU for discussions, Virginia Unkefer from KAUST for manuscript editing. S. Essig held a Marie Skłodowska-Curie Individual Fellowship from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No: 706744, action acronym: COLIBRI). Part of this work was funded by the European Union's Horizon 2020 research and innovation programme under Grant Agreements no. 727529 (project DISC), and by the Swiss National Science Foundation via the NRP70 “Energy Turnaround” project “PV2050.”

Fingerprint

Dive into the research topics of 'Toward Annealing-Stable Molybdenum-Oxide-Based Hole-Selective Contacts For Silicon Photovoltaics'. Together they form a unique fingerprint.

Cite this