Abstract
Personalized PageRank (PPR) is a classic metric that measures the relevance of graph nodes with respect to a source node. Given a graph G, a source node s, and a parameter k, a top-k PPR query returns a set of k nodes with the highest PPR values with respect to s. This type of queries serves as an important building block for numerous applications in web search and social networks, such as Twitter's Who-To-Follow recommendation service. Existing techniques for top-k PPR, however, suffer from two major deficiencies. First, they either incur prohibitive space and time overheads on large graphs, or fail to provide any guarantee on the precision of top-k results (i.e., the results returned might miss a number of actual top-k answers). Second, most of them require significant pre-computation on the input graph G, which renders them unsuitable for graphs with frequent updates (e.g., Twitter's social graph). To address the deficiencies of existing solutions, we propose TopPPR, an algorithm for top-k PPR queries that ensure at least ? precision (i.e., at least ? fraction of the actual top-k results are returned) with at least 1-1/n probability, where ? ? (0, 1] is a userspecified parameter and n is the number of nodes in G. In addition, TopPPR offers non-trivial guarantees on query time in terms of ?, and it can easily handle dynamic graphs as it does not require any preprocessing. We experimentally evaluate TopPPR using a variety of benchmark datasets, and demonstrate that TopPPR outperforms the state-of-the-art solutions in terms of both efficiency and precision, even when we set ? = 1 (i.e., when TopPPR returns the exacttop-k results). Notably, on a billion-edge Twitter graph, TopPPR only requires 15 seconds to answer a top-500 PPR query with ? = 1.
Original language | English (US) |
---|---|
Title of host publication | SIGMOD 2018 - Proceedings of the 2018 International Conference on Management of Data |
Editors | Gautam Das, Christopher Jermaine, Ahmed Eldawy, Philip Bernstein |
Publisher | Association for Computing Machinery (ACM) |
Pages | 441-456 |
Number of pages | 16 |
ISBN (Electronic) | 9781450317436 |
DOIs | |
State | Published - May 27 2018 |
Event | 44th ACM SIGMOD International Conference on Management of Data, SIGMOD 2018 - Houston, United States Duration: Jun 10 2018 → Jun 15 2018 |
Publication series
Name | Proceedings of the ACM SIGMOD International Conference on Management of Data |
---|---|
ISSN (Print) | 0730-8078 |
Conference
Conference | 44th ACM SIGMOD International Conference on Management of Data, SIGMOD 2018 |
---|---|
Country/Territory | United States |
City | Houston |
Period | 06/10/18 → 06/15/18 |
Bibliographical note
Publisher Copyright:© 2018 Association for Computing Machinery.
Keywords
- Personalized pagerank
- Top-k queries
ASJC Scopus subject areas
- Software
- Information Systems