Topological electronic state and anisotropic Fermi surface in half-Heusler GdPtBi

Junli Zhang, Jie Chen, Peng Li, Chenhui Zhang, Zhipeng Hou, Yan Wen, Qiang Zhang, Wenhong Wang, Xixiang Zhang

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Half-Heusler alloys possess unique and desirable physical properties due to their thermoelectricity, magnetism, superconductivity, and weak antilocalization effects. These properties have become of particular interest since the recent discovery of topological Weyl semimetal state for which the electronic bands are dispersed linearly around one pair of Weyl nodes, with opposite chirality (i.e., chiral anomaly). Here, we report the transport signatures of topological electronic state in a half-Heusler GdPtBi single crystal. We show that the non-trivial  Berry phase, negative magnetoresistance and giant planner Hall effect arise from the chiral anomaly and that the Shubnikov-de Haas (SdH) oscillation frequency in GdPtBi is angle-dependent with an anisotropic Fermi surface (FS). All transport signatures not only demonstrate the topological electronic state in half-Heusler GdPtBi crystals, but also describe the shape of the anisotropy FS.
Original languageEnglish (US)
JournalJournal of Physics: Condensed Matter
DOIs
StatePublished - Apr 30 2020

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): CRF-2015-2549-CRG4
Acknowledgements: This work was financially supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR), Saudi Arabia, under Award No. CRF-2015-2549-CRG4, and the China Postdoctoral Science Foundation No. Y6BK011M51. W.H.W acknowledges support from the National Natural Science Foundation of China (No.11974406) and Fujian Innovation Academy, Chinese Academy of Sciences.

Fingerprint

Dive into the research topics of 'Topological electronic state and anisotropic Fermi surface in half-Heusler GdPtBi'. Together they form a unique fingerprint.

Cite this