Abstract
Monodispersed TiN nanoparticles with a narrow size distribution (7–23 nm) were synthesized using mesoporous graphitic (mpg)-C3N4 templates with different pore sizes. The nano-materials were examined as electrocatalysts for oxygen reduction reaction (ORR) in alkaline media. The TiN nanoparticles were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 sorption, transmission electron microscopy (TEM), and C-H-N elemental analysis. The ORR current increased as the TiN particle size decreased, and hence the surface area of TiN nanoparticles reactive to ORR increased. Rotating ring disk electrode (RRDE) measurements revealed that the ORR on TiN surfaces proceeded mainly via a two-electron pathway, producing H2O2 as the main product. Mechanistic aspects of ORR on TiN surfaces are discussed.
Original language | English (US) |
---|---|
Pages (from-to) | F501-F506 |
Number of pages | 1 |
Journal | Journal of the Electrochemical Society |
Volume | 160 |
Issue number | 6 |
DOIs | |
State | Published - Mar 12 2013 |