Titanium Carbide MXene Nucleation Layer for Epitaxial Growth of High-Quality GaN Nanowires on Amorphous Substrates

Aditya Prabaswara, Hyunho Kim, Jung-Wook Min, Ram Chandra Subedi, Dalaver H. Anjum, Bambar Davaasuren, Kalani Moore, Michele Conroy, Somak Mitra, Iman S. Roqan, Tien Khee Ng, Husam N. Alshareef, Boon S. Ooi

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Growing III-nitride nanowires on 2D materials is advantageous, as it effectively decouples the underlying growthsubstrate from the properties of the nanowires. As a relatively new family of 2D materials, MXenes are promising candidates as III-nitride nanowire nucleation layers capable of providing simultaneous transparency and conductivity. In this work, we demonstrate the direct epitaxial growth of GaN nanowires on Ti3C2 MXene films. The MXene films consist of nanoflakes spray coated onto an amorphous silica substrate. We observed an epitaxial relationship between the GaN nanowires and the MXene nanoflakes due to the compatibility between the triangular lattice of Ti3C2 MXene and the hexagonal structure of wurtzite GaN. The GaN nanowires on MXene show good material quality and partial transparency at visible wavelengths. Nanoscale electrical characterization using conductive atomic force microscopy reveals a Schottky barrier height of ∼330 meV between the GaN nanowire and the Ti3C2 MXene film. Our work highlights the potential of using MXene as a transparent and conductive preorienting nucleation layer for high-quality GaN growth on amorphous substrates.
Original languageEnglish (US)
Pages (from-to)2202-2211
Number of pages10
JournalACS Nano
Volume14
Issue number2
DOIs
StatePublished - Feb 3 2020

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: We acknowledge the financial support from the King Abdulaziz City for Science and Technology (KACST) under grant no. KACST TIC R2-FP 008. This work was partially supported by the King Abdullah University of Science and Technology (KAUST) baseline funding and MBE equipment funding nos. C/M-20000-12-001-77 and KCR/1/4055-01-01. The authors thank L.-M. Peng of Peking State University for providing the PKUMSM MATLAB script.

Fingerprint

Dive into the research topics of 'Titanium Carbide MXene Nucleation Layer for Epitaxial Growth of High-Quality GaN Nanowires on Amorphous Substrates'. Together they form a unique fingerprint.

Cite this