Tissue Equivalent Curved Organic X-ray Detectors Utilizing High Atomic Number Polythiophene Analogues

M. Prabodhi A. Nanayakkara, Qiao He, Arvydas Ruseckas, Anushanth Karalasingam, Lidija Matjacic, Mateus G. Masteghin, Laura Basiricò, Ilaria Fratelli, Andrea Ciavatti, Rachel C. Kilbride, Sandra Jenatsch, Andrew J. Parnell, Beatrice Fraboni, Andrew Nisbet, Martin Heeney, K. D.G.Imalka Jayawardena, S. Ravi P. Silva*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Organic semiconductors are a promising material candidate for X-ray detection. However, the low atomic number (Z) of organic semiconductors leads to poor X-ray absorption thus restricting their performance. Herein, the authors propose a new strategy for achieving high-sensitivity performance for X-ray detectors based on organic semiconductors modified with high –Z heteroatoms. X-ray detectors are fabricated with p-type organic semiconductors containing selenium heteroatoms (poly(3-hexyl)selenophene (P3HSe)) in blends with an n-type fullerene derivative ([6,6]-Phenyl C71 butyric acid methyl ester (PC70BM). When characterized under 70, 100, 150, and 220 kVp X-ray radiation, these heteroatom-containing detectors displayed a superior performance in terms of sensitivity up to 600 ± 11 nC Gy−1 cm−2 with respect to the bismuth oxide (Bi2O3) nanoparticle (NP) sensitized organic detectors. Despite the lower Z of selenium compared to the NPs typically used, the authors identify a more efficient generation of electron-hole pairs, better charge transfer, and charge transport characteristics in heteroatom-incorporated detectors that result in this breakthrough detector performance. The authors also demonstrate flexible X-ray detectors that can be curved to a radius as low as 2 mm with low deviation in X-ray response under 100 repeated bending cycles while maintaining an industry-standard ultra-low dark current of 0.03 ± 0.01 pA mm−2.

Original languageEnglish (US)
Article number2304261
JournalAdvanced Science
Volume10
Issue number35
DOIs
StatePublished - Dec 15 2023

Bibliographical note

Publisher Copyright:
© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.

Keywords

  • flexible
  • heteroatom
  • organic electronics
  • photonics
  • x-ray detectors

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • General Chemical Engineering
  • General Materials Science
  • Biochemistry, Genetics and Molecular Biology (miscellaneous)
  • General Engineering
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Tissue Equivalent Curved Organic X-ray Detectors Utilizing High Atomic Number Polythiophene Analogues'. Together they form a unique fingerprint.

Cite this