Abstract
We study the sum throughput of multiple-input-multiple-output (MIMO) networks in the cases with large but finite number of transmit and receive data terminals. We develop an efficient scheduling scheme using genetic algorithms (GAs), and evaluate the effect of various parameters, such as channel/precoding models, number of antennas/users, scheduling costs and power amplifiers efficiency, on the system performance. Also, considering continuous and bursty communication scenarios with different users' data request probabilities, we derive closed-form expressions for the maximum achievable throughput of the MIMO networks using optimal schedulers. As we show, our proposed GA-based scheduler reaches (almost) the same throughput as in the exhaustive search-based optimal scheduler, with substantially less implementation complexity. Also, the power amplifiers inefficiency affect the network throughput significantly. For instance, consider a MIMO setup with a 40-antenna base station, 60 users, total consumed power of 26 dB, continuous communications and the typical parameter settings of the power amplifiers. Then, the network throughput decreases by 50% when the power amplifiers efficiency reduces from 75% to 25%.
Original language | English (US) |
---|---|
Title of host publication | 2018 IEEE Wireless Communications and Networking Conference, WCNC 2018 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1-6 |
Number of pages | 6 |
ISBN (Electronic) | 9781538617342 |
DOIs | |
State | Published - Jun 8 2018 |
Event | 2018 IEEE Wireless Communications and Networking Conference, WCNC 2018 - Barcelona, Spain Duration: Apr 15 2018 → Apr 18 2018 |
Publication series
Name | IEEE Wireless Communications and Networking Conference, WCNC |
---|---|
Volume | 2018-April |
ISSN (Print) | 1525-3511 |
Conference
Conference | 2018 IEEE Wireless Communications and Networking Conference, WCNC 2018 |
---|---|
Country/Territory | Spain |
City | Barcelona |
Period | 04/15/18 → 04/18/18 |
Bibliographical note
Publisher Copyright:© 2018 IEEE.
ASJC Scopus subject areas
- General Engineering