Thin-film composite mixed-matrix membrane with irregular micron-sized UTSA-16 for outstanding gas separation performance

Hyo Jun Min, Miso Kang, Youn-Sang Bae, Richard Blom, Carlos A. Grande, Jong Hak Kim

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Low-cost, micron-sized particles still pose a barrier to their use in thin-film composite mixed-matrix membranes (TFC-MMMs) owing to their poor interfacial contact with the polymer matrix. Also, the particles are too large to be fabricated into the submicron-thick membranes. Herein, we report high-performing, TFC-MMMs based on a CO2-philic comb copolymer, poly (tetrahydrofurfuryl methacrylate)–co–poly (poly (oxyethylene methacrylate)) (PTO), and an irregular, micron-sized, CO2-selective metal-organic framework (MOF), UTSA-16. The PTO comb copolymer matrix exhibited excellent film-forming ability, adhesion properties and showed a good gas separating performance. The PTO comb copolymer also enhanced the dispersibility of UTSA-16 in an environment-friendly solvent mixture (i.e., ethanol/water), which did not adversely damage the underlying porous polymeric support. Despite the micron-scale particle size of UTSA-16, PTO copolymer completely covered the surface of UTSA-16 via strong interactions without any deep pore infiltration and exhibited excellent interfacial contact properties. Consequently, defect-free TFC-MMMs with a polymer thickness of 300 nm were successfully prepared on the porous support. The TFC-MMM with 10% filler loading exhibited excellent CO2 permeance and selectivity, i.e., CO2 permeance of 1070 GPU, CO2/N2 selectivity of 41.0, CO2/CH4 selectivity of 17.2, outperforming the TFC-MMMs prepared with commercially available Pebax. All PTO-based MMMs, with the exception of the low content of UTSA-16 (5%), exceeded the gas separation performance required for post-combustion CO2 capture process.
Original languageEnglish (US)
Pages (from-to)121295
JournalJournal of Membrane Science
Volume669
DOIs
StatePublished - Dec 27 2022

Bibliographical note

KAUST Repository Item: Exported on 2023-02-10
Acknowledgements: This work was supported by National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIT) (2020K1A4A7A02095371, 2017R1D1A1B06028030), and by the Norwegian Research Council (NRC, grant number 267873).

Fingerprint

Dive into the research topics of 'Thin-film composite mixed-matrix membrane with irregular micron-sized UTSA-16 for outstanding gas separation performance'. Together they form a unique fingerprint.

Cite this