Theroratical Study of Fully Printed Magnetically Tunable Reconfigurable Patch Antenna

Farhan A. Ghaffar, Mohammad Vaseem, Langis Roy, Atif Shamim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Due to varying wireless standards in different regions, there is a big desire to have reconfigurable and tunable components which can be tuned to the frequency of interest. At present a single wireless device, such as a mobile phone contains multiple antennas, filters, all of them working at different frequencies. It will be great if an antenna or a filter can be tuned to work at different frequencies, thus the overall number of antennas or filters in a device can be reduced. This control is possible through a magnetic field, if these components are built on a magnetic substrate. Traditional magnetic substrates are expensive that involve complicated fabrication process and operate the material in saturated state making them inefficient. A better approach would be to operate the antenna or any other microwave device in the partially magnetized state. In this work, the authors present the theory and design of a polarization reconfigurable patch antenna with frequency tunablity in the unsaturated state. Operating away from the saturated state can improve the overall efficiency of the RF components. The analytical model is initially verified using a high frequency simulator to predict the antenna performance on a magnetic substrate with normal bias. A low-cost printing technique where the substrate could be realized using magnetic ink is used for the implementation of the antenna. A circular patch antenna working at 6 GHz is used for the validation of the theory. When triggered by an external magnetic field, the as-fabricated antenna shows a maximum tuning range of ~16% and ~5% for the two splitted frequency points. A good match is achieved between the theory, simulations and measurements of the antenna.
Original languageEnglish (US)
Title of host publication2018 IEEE Indian Conference on Antennas and Propogation (InCAP)
PublisherIEEE
ISBN (Print)9781538670606
DOIs
StatePublished - Jul 26 2019

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01

Fingerprint

Dive into the research topics of 'Theroratical Study of Fully Printed Magnetically Tunable Reconfigurable Patch Antenna'. Together they form a unique fingerprint.

Cite this