Abstract
We study the thermoelectric properties of bulk and monolayer MoSe2 and WSe2 by first-principles calculations and semiclassical Boltzmann transport theory. The lattice thermal conductivity is calculated using the self-consistent iterative approach as well as the single-mode relaxation time approximation. The acoustical and optical contributions to the lattice thermal conductivity are evaluated along with the influence of the phonon mean free path. The employed methodology enables a quantitative comparison of the thermoelectric properties of transition-metal dichalcogenides. In particular, WSe2 is found to be superior to MoSe2 for thermoelectric applications.
Original language | English (US) |
---|---|
Pages (from-to) | 1278-1284 |
Number of pages | 7 |
Journal | Chemistry of Materials |
Volume | 27 |
Issue number | 4 |
DOIs | |
State | Published - Feb 5 2015 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: Research reported in this publication was supported by the King Abdullah University of Science and Technology (KAUST).
ASJC Scopus subject areas
- Materials Chemistry
- General Chemical Engineering
- General Chemistry