Thermodynamically consistent Darcy–Brinkman–Forchheimer framework in matrix acidization

Yuanqing Wu, Jisheng Kou, Shuyu Sun, Yu-Shu Wu

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


Matrix acidization is an important technique used to enhance oil production at the tertiary recovery stage, but its numerical simulation has never been verified. From one of the earliest models, i.e., the two-scale model (Darcy framework), the Darcy–Brinkman–Forchheimer (DBF) framework is developed by adding the Brinkman term and Forchheimer term to the momentum conservation equation. However, in the momentum conservation equation of the DBF framework, porosity is placed outside of the time derivation term, which prevents a good description of the change in porosity. Thus, this work changes the expression so that the modified momentum conservation equation can satisfy Newton’s second law. This modified framework is called the improved DBF framework. Furthermore, based on the improved DBF framework, a thermal DBF framework is given by introducing an energy balance equation to the improved DBF framework. Both of these frameworks are verified by former works through numerical experiments and chemical experiments in labs. Parallelization to the complicated framework codes is also realized, and good scalability can be achieved.
Original languageEnglish (US)
Pages (from-to)8
JournalOil & Gas Science and Technology – Revue d’IFP Energies nouvelles
StatePublished - Jan 29 2021

Bibliographical note

KAUST Repository Item: Exported on 2021-02-01
Acknowledgements: This work is supported by the Peacock Plan Foundation of Shenzhen (No. 000255), the National Natural Science Foundation of China (No. 11601345) and the Natural Science Foundation of SZU (No. 2017059).


Dive into the research topics of 'Thermodynamically consistent Darcy–Brinkman–Forchheimer framework in matrix acidization'. Together they form a unique fingerprint.

Cite this