Abstract
Surfactant-mediated chemical routes allow one to synthesize highly engineered shape- and size-controlled nanocrystals. However, the occurrence of capping agents on the surface of the nanocrystals is undesirable for selected applications. Here, a novel approach to the production of shape-controlled nanocrystals which exhibit high thermal stability is demonstrated. Ceria nanocubes obtained by surfactant-mediated synthesis are embedded inside a highly porous silica aerogel and thermally treated to remove the capping agent. Powder X-ray Diffraction and Scanning Transmission Electron Microscopy show the homogeneous dispersion of the nanocubes within the aerogel matrix. Remarkably, both the size and the shape of the ceria nanocubes are retained not only throughout the aerogel syntheses but also upon thermal treatments up to 900 °C, while avoiding their agglomeration. The reactivity of ceria is measured by in situ High-Energy Resolution Fluorescence Detected - X-ray Absorption Near Edge Spectroscopy at the Ce L3 edge, and shows the reversibility of redox cycles of ceria nanocubes when they are embedded in the aerogel. This demonstrates that the enhanced reactivity due to their prominent {1 0 0} crystal facets is preserved. In contrast, unsupported ceria nanocubes begin to agglomerate as soon as the capping agent decomposes, leading to a degradation of their reactivity already at 275 °C.
Original language | English (US) |
---|---|
Pages (from-to) | 376-384 |
Number of pages | 9 |
Journal | Journal of Colloid and Interface Science |
Volume | 583 |
DOIs | |
State | Published - Sep 22 2020 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-12Acknowledgements: This work was supported by the British Council UK-Gulf Institutional Links grant (279183790) and by the Engineering and Physical Sciences Research Council (EPSRC) grants (EP/K50306X/1 and EP/1641783). The authors also wish to thank the Diamond Light Source for the award of beam time SP19013. The graphical abstract was produced by Heno Hwang, scientific illustrator at KAUST, who is gratefully acknowledged.