Therapeutic Potential of Microalgae-Derived Bioactive Metabolites Is Influenced by Different Large-Scale Culture Strategies.

Jezabel Garcia-Parra, Deyarina Gonzalez

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Microalgae have been identified as one of the most promising sources of novel bioactive compounds for biomedical applications, the food industry, and cosmetics. In the last decade, several biotechnological developments have facilitated the identification of a growing number of compounds as well as the study of optimal microalgae culture conditions for the production of biomass enriched in specific molecules of interest. In this study, two common commercial marine microalgae (Nannochloropsis oculata and Porphyridium purpureum) were cultured in standard and nutrient-stressed conditions and the obtained biomass extracts were assessed for their potential to inhibit cancer cell proliferation and migration as well as their antioxidant activity. Results from viability in 2D and 3D cancer cell models showed an enhancement of the antitumour activity of P. purpureum in the 3D model compared to 2D, together with a greater capacity to reduce the migration capacity of cancer cells with the biomass from nutrient-stressed conditions, whereas the antioxidant activity of N. oculata decreased when exposed to nutrient-stressed conditions. To date, this is one of the few studies that proves that controlled changes in large-scale culturing conditions such as nutrient depletion have a relevant impact in the bioactivity of the biomass on cancer cells.
Original languageEnglish (US)
Pages (from-to)627
JournalMarine Drugs
Volume20
Issue number10
DOIs
StatePublished - Oct 30 2022
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2022-10-31
Acknowledgements: We would like to thank Amelia Hodges, Swansea University undergraduate student, for technical support in this project. This project was funded by: Interreg Atlantic Area European Regional development fund, project Enhance Microalgae EAPA_338/2016 (C.F.G). Swansea University Medical School departmental funds (J.G.P. and D.G.), and Ministry of Environment, Water and Agriculture (MEWA) of the Kingdom of Saudi Arabia, project number: 52000003916, Development of Algal Biotechnology in the Kingdom of Saudi Arabia (C.F.G.).

ASJC Scopus subject areas

  • Drug Discovery

Fingerprint

Dive into the research topics of 'Therapeutic Potential of Microalgae-Derived Bioactive Metabolites Is Influenced by Different Large-Scale Culture Strategies.'. Together they form a unique fingerprint.

Cite this