Theory of the Topological Spin Hall Effect in Antiferromagnetic Skyrmions: Impact on Current-Induced Motion

C. A. Akosa, O. A. Tretiakov, G. Tatara, A. Manchon

Research output: Contribution to journalArticlepeer-review

45 Scopus citations

Abstract

We demonstrate that the nontrivial magnetic texture of antiferromagnetic Skyrmions (AFM Sks) promotes a nonvanishing topological spin Hall effect (TSHE) on the flowing electrons. This effect results in a substantial enhancement of the nonadiabatic torque and, hence, improves the Skyrmion mobility. This nonadiabatic torque increases when decreasing the Skyrmion size, and, therefore, scaling down results in a much higher torque efficiency. In clean AFM Sks, we find a significant boost of the TSHE close to the van Hove singularity. Interestingly, this effect is enhanced away from the band gap in the presence of nonmagnetic interstitial defects. Furthermore, unlike their ferromagnetic counterpart, the TSHE in AFM Sks increases with an increase in the disorder strength, thus opening promising avenues for materials engineering of this effect.

Original languageEnglish (US)
Article number097204
JournalPhysical Review Letters
Volume121
Issue number9
DOIs
StatePublished - Aug 30 2018
Externally publishedYes

Bibliographical note

Funding Information:
This work was supported by Grant-in-Aid for Scientific Research(B) No. 17H02929, from the Japan Society for the Promotion of Science and Grant-in-Aid for Scientific Research on Innovative Areas No. 26103006 from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. O. A. T. acknowledges support by the Grants-in-Aid for Scientific Research (No. 25247056, No. 17K05511, and No. 17H05173) from the MEXT of Japan, MaHoJeRo (DAAD Spintronics network, Project No. 57334897), and by JSPS and RFBR under the Japan-Russia Research Cooperative Program. A. M. acknowledges support from the King Abdullah University of Science and Technology (KAUST). C. A. A. thanks R. Cheng for useful discussions.

Publisher Copyright:
© 2018 American Physical Society.

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Theory of the Topological Spin Hall Effect in Antiferromagnetic Skyrmions: Impact on Current-Induced Motion'. Together they form a unique fingerprint.

Cite this