Abstract
We present a developmental model of ocular dominance column formation that takes into account the existence of an array of intrinsically specified cytochrome oxidase blobs. We assume that there is some molecular substrate for the blobs early in development, which generates a spatially periodic modulation of experience-dependent plasticity. We determine the effects of such a modulation on a competitive Hebbian mechanism for the modification of the feedforward afferents from the left and right eyes. We show how alternating left and right eye dominated columns can develop, in which the blobs are aligned with the centers of the ocular dominance columns and receive a greater density of feedforward connections, thus becoming defined extrinsically. More generally, our results suggest that the presence of periodically distributed anatomical markers early in development could provide a mechanism for the alignment of cortical feature maps. © 2010 The American Physical Society.
Original language | English (US) |
---|---|
Journal | Physical Review E |
Volume | 82 |
Issue number | 2 |
DOIs | |
State | Published - Aug 23 2010 |
Externally published | Yes |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledged KAUST grant number(s): KUK-C1-013-4
Acknowledgements: This paper was based on work supported in part by the NSF (Grant No. DMS-0209824) and by Award No. KUK-C1-013-4 made by the King Abdullah University of Science and Technology (KAUST). P.C.B. was also partially supported by the Royal Society-Wolfson Foundation, and A.M.O. was partially supported by the Neuropole de Recherche Francilien (NeRF) and an ANR MNP 'Dopanic' grant.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.