Theory and feasibility tests for a seismic scanning tunnelling macroscope

Gerard T. Schuster, Sherif Hanafy, Yunsong Huang

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

We propose a seismic scanning tunnelling macroscope (SSTM) that can detect subwavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the scatterer is in the near-field region. This means that, as the scatterer approaches the source, imaging of the scatterer with super-resolution can be achieved. Acoustic and elastic simulations support this concept, and a seismic experiment in an Arizona tunnel shows a TRM profile with super-resolution adjacent to the fault location. The SSTM is analogous to the optical scanning tunnelling microscopes having subwavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by the imaging of near-field seismic energy.
Original languageEnglish (US)
Pages (from-to)1593-1606
Number of pages14
JournalGeophysical Journal International
Volume190
Issue number3
DOIs
StatePublished - Jul 23 2012

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01

ASJC Scopus subject areas

  • Geochemistry and Petrology
  • Geophysics

Fingerprint

Dive into the research topics of 'Theory and feasibility tests for a seismic scanning tunnelling macroscope'. Together they form a unique fingerprint.

Cite this