Abstract
The molecular aggregation structure of 5,5′-bis(naphthalen-2-yl)-2,2′-bi(1,3,4-oxadiazole) (BOXD-NP) was studied by computing the intermolecular interaction potential energy surface (PES) at density functional theory level based on a dimer model. All B3LYP, CAM-B3LYP and M062x functionals can yield a reliable isolated molecular geometry. The conformation of BOXD-NP obtained with all methods is perfectly planar, indicating good conjugation ability between oxadiazole and naphthalene rings. The vibrational frequencies of BOXD-NP were also calculated using the B3LYP/6-311+G∗∗ method, which showed great consistency with the experimental observations and makes the assignments of the IR spectra more solid. It was revealed that the lowest excited state of BOXD-NP should be assigned as a highly allowed π-π∗ state by TD-DFT calculation. Considering the non-covalent interactions in molecular aggregates, the M062x functional was applied in the construction of the PES. Besides the packing structure found in the crystals, PES also predicted several stable structures, indicating that PES has great ability in guiding molecular self-assembly. Symmetry Adapted Perturbation Theory (SAPT) analysis on these energy-minimum molecular stacking structures revealed that London dispersion forces are the strongest attractive component in the binding. This journal is
Original language | English (US) |
---|---|
Pages (from-to) | 51942-51949 |
Number of pages | 8 |
Journal | RSC Adv. |
Volume | 4 |
Issue number | 94 |
DOIs | |
State | Published - 2014 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: Author H.W. would like to thank Dr Jian Wang (Jilin University) for providing HPC skills. This work was supported by National Science Foundation of China (51103057, 51073071, 21173096, 21072076, and 21003057), and Postdoctoral Science Foundation of China (2012T50294).
ASJC Scopus subject areas
- General Chemical Engineering
- General Chemistry